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The Kullback relative-information measure and Kerridge's inaccuracy 
measure and their generalized forms are consequences of different forms of 
the branching property that these measures are required to satisfy. We 
consider a seemingly more generalized form and show that it does not lead 
to new measures. We also form a functional equation in two variables 
through this generalized branching property and show that this leads to the 
same result. 
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1. INTRODUCTION 

S h a r m a  a n d  T a n e j a  (n~ ax iomat i ca l ly  charac te r ized  the  measu res  

I,(P; Q) = A ~ p ,  logp~ + B pi l ogq i  
i = 1  i = 1  

a n d  

0) 
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I~'B)(P; Q) = C p,"q,~ - 1 , a > 0 (2) 

(A, B, a n d  C are  a r b i t r a r y  c o n s t a n t s  a n d  ~ a n d  fl are  pa r ame te r s  such tha t  

c~ ~ 1 when  /3 = 0) c o r r e s p o n d i n g  to the  p r o b a b i l i t y  d i s t r i bu t ions  P = 

(Pl  ..... P , ) ,  Pt t> 0, ~.~=~pt = 1, a n d  Q = ( q l , . . . , q , ) ,  q~ > 0, ~p=zq,  ~< 1, 
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associated with a discrete random variable X assuming finite number of values 
~,..., ~,. 

Measures (1) and (2) jointly have also been characterized by Taneja (la) 
by a generalized functional equation having four different functions. 

Measures (1) and (2) under certain boundary conditions reduce to 
Kullback's (7~ relative-information measure and Kerridge's (6) inaccuracy 
measure [see expressions (27) and (31), respectively] and their generalized 
forms given in (28) and (32), respectively. Thus the measures studied by 
Kullback and Kerridge, which have many uses in information theory, 
statistics, physics, economics, etc., and their respective generalized forms are 
included in (1) and (2). 

These measures arise mainly due to a branching property which for (2) 
may be .written as 

I(~'~'a)(e; Q) - I ~ ( p ~  + p2, pa,..., p ,;  q~ + q2, qa ..... q,) 

= p~q,t3I~'~.a)(...) (3) 

wherep~ = p a  + p 2  > 0 ; q , = q l  + q 2  > 0. 
The relation (3) when /~ = 0 and ~ = 1 gives rise to a different case 

which leads to the measure (1). 
In this communication, we start with a seemingly more generalized form 

of the branching property, taking a general continuous function f (p ,  ; q~) in 
place of the p~qe that occurs in (3). It is established that such a change does 
not give new measures and that (1) and (2) cover all the measures that can 
be so obtained. In fact,f(p~;qO = p~q~ is the most general form compatible 
with the generalized form of (3), provided we impose constraints of symmetry 
and continuity. 

Remarks. In what follows we shall take 0 log 0 = 0 log (O/q~) = 0 for 
all i = 1, 2 ..... n and all the logarithms are considered to the base 2. 

2. C H A R A C T E R I Z A T I O N  T H E O R E M  

Let In:(P; Q) be an information-theoretic measure associated with a 
pair of probability distributions P = (Pl .... , p,), p~ >1 0, ~P=I P~ = 1, and 
Q = (ql ..... q~), q~ > 0, ~=~q~ ~< 1 of a discrete random variable. We 
consider that the function I,~:(P; Q) satisfies the following axioms: 

(I) (Continuity). I,,:(P; Q) is a continuous function of its arguments. 
(II) (Symmetry). I j (P ;  Q) is symmetric for any permutation of 

elements in P followed by the same permutation of elements in Q. 
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(III) (Generalized branching property).  

I[+m-l(pl  .... , P~-I, Vl ..... V,,, p~+ I,..., p,;  

X q1 ..... q~-l, hi,... ,  hm, q~+l,..., q~) 

= I,S(P; Q) + f(p~; q,)Im1(Vl/p,,..., vm/p, ; hz/q, .... , h~/qi) 

where vk t> 0, ~ = l v ~  =p~ > 0; hk > 0, ~ = z k k = q ~ >  0 for 
every i = 1, 2,..., n; and f is any continuous funct ion defined in 
[0, 1] x (0, 1] such that f ( 0 ;  q) = 0. 

Theorem. The funct ion I,r(P; Q) determined by the axioms (I)-(III)  can 
be only of  the form (1) or (2). 

Before proving the theorem, we give some intermediate results based on 
above axioms in the following lemmas: 

Lemma 1. I f  v~j >t O, j = 1, 2 ..... m~, ~ v~j = p~ > O, and h~j > O, 
j =  1, 2,..., m~, ~ L l h , j  --- q, > 0, i =  1,2, . . . ,n ,  E L z P , =  1, ~r=~q,~< 1, 
then 

IIml+m2+ ..... (Vzl,..., Vlm~,..., V,1,..., V,m, ; h l l  ..... hlm~ ..... h,1, .... h,m,) 
n 

= I,r(P; Q) + ~ , f ( p ,  ;qOUm,(V,~/p,,..., V,m]p,; h,x/q, .... , h~,/q,) (4) 
i = 1  

This lemma directly follows f rom axiom (III). 

Lemma 2. I f  F(m; r) = ImP(I/m,..., l /m; l/r,..., l/r), then 

F(m; r) = A' log m + B' log r when f (1 /m;  1/r) -r 1/m (5) 

o r  

F(m; r) = C[mf(1/m; 1/r) - 1] when f (1 /m;  1/r) # 1/m (6) 

where 

f(1/rnn; 1/rs) = f (1 /m;  1/r)f(1/n; l/s) (7) 

m, n, r, and s are arbi t rary positive integers such that  1 ~ m ~< r, 1 ~< n ~ s; 
and A', B',  and C are arbi t rary constants. 

Proof. In Lemma 1 replace rn~ by m, set v,j = 1~ran, h~j = 1/rs, q~ = 1/s, 
i = 1, 2,..., n; j = 1, 2,..., m; where m, n, r, and s are positive integers such 
that  1 <~ m <~ r, 1 <<. n <~ s; then we obtain 

F(mn; rs) = F(m; r) + mf(1/m; 1/r)F(n; s) (8) 

Now there are two cases to consider. 

Case L When  f (1 /m;  1/r) = 1/m. In this case (8) reduces to 

F(rnn; rs) = F(m; r) + F(n; s) (9) 
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The cont inuous solution of  this number- theoret ic  functional  equat ion 
(refer to Acz61 m) is given by (5). 

Case II.  W h e n  f ( 1 / m ;  1/r) r 1/m. In this case symmetry in m,n  and r,s 
implies 

F ( m n ;  rs) = F(nrn;  sr)  

i.e., 

o r  

F ( m ;  r) + m f ( 1 / m ;  1 /r )F(n;  s) = F(n;  s) + n f (1 /n;  1 / s )F(m;  r) 

F ( m ;  r) F(n ;  s) 
m f ( 1 / m ;  l / r )  - 1 = n f (1 /n;  1/s) - 1 = C (say) (10) 

p r o v i d e d f ( 1 / m ;  1/r) r 1/m. 
Thus, expression (10) gives 

F ( m ;  r) = C [ m f ( 1 / m ;  1/r) - 1] if f ( 1 / m ;  I / r )  # 1/m 

where C is any arbi t rary constant .  
N o w  substituting (6) in (8), we get (7). 

Lemma 3. The function f i n  axiom (I l l )  is such that  it satisfies a functional  
equat ion 

f ( p u ;  qv) = f ( p ;  q ) f ( u ;  v) (1 l) 

for  all reals p, u e [0, l] and q, v e (0, 1 ]. 

P r o @  F r o m  axiom (III), we may write 

I~ + m- l (pl  ,..., P~- l , vl,..., Vm , p, + l ,..., p~ ; ql ,..., q~- l , hi ..... hm , q~ + ~ ,..., q~) 

= I s  v l ,  fi, P~+I,. . . ,P~; ql . . . . .  q,_~, h l ,  q, q,+~ .... , q~) 

+ f(f i;q)Um-~(v21~,. . . ,  vml~;h2/q ..... hm/q) 

where / ~ = v 2 + . . . + v m > O ;  q = h2 + . . .  + hm > 0  

= I , f (P ;  Q) + f ( p , ;  q , ) I j ( v l /p , ; f i / p , ;  hl/q,, q/q,) 

+ f ( f i ;  q)Fm-l(v2/D,... ,  Vm/P; h2/q,..., hm/q) 

where p s = V ~ + / ~ = V l + . . . + V m ;  q ~ = h l + q = h l + . . . + h m  

(12) 
Alternatively, we can write, again f rom axiom (III), 

I~ + m_ z (p~ .... ,p~_~,v~ ..... v~ , p~ + ~ .... , p~ ; q~ .... , q~ _ ~ , h~ ..... hm,q~+~ .... ,q~) 

= I ,  I (P;  Q) + f ( p , ;  qOIm f (vl/p, ..... Vm/p, ; hz/q~ .... , hm/q~) 

= I,~ j" (P; Q) + f ( p ,  ;q,){Iz I (v~/p,, flip, ;h~/q,, q/q,) 

+ f ( f f /p i ;  q/qOItm- z(V2/D,..., Vrn/fi; h2/q,..., hm/q)} 

= I J  (P; Q) + f ( p , ;  q , ) r j  (vz/p,,  p/p,;  h~/q~, q/q,) 

+ f ( p d  qOf( f i /pd  q/q~)I~_ z(v2/ff ..... Vm/fi; h2/q ..... hr~/q) (13) 
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Comparing (12) and (13), we get 

f(.ff/P~; q/q~) = f(f f;  ~t)/f(P, ;q,) if f(p~; q~) ~ 0 (14) 

Now (14) together with (6) and the continuity of the funct ionfgives  (11). 

Proof o f  the Theorem. We prove the theorem for rationals and then the 
continuity axiom (I) gives the result for reals. For  this let m, the x~ and the y~ 
be positive integers such that x~ ~< y~ for every i = 1, 2,..., n and ~=~  x~ = m 
and if we put p~ = xJm, q~ = yJr, i = 1, 2,..., n, where ~p= 1 Y~ ~< r, then 
Lemmas 1 and 2 give 

l ,r(P; Q) = F(m; r) - ~ f ( p , ;  q~)F(xi; yd 
i = J .  

(15) 

Now (15) together with (5) gives (1). 
Again (15) together with (11) and (6) gives 

q,,_ 11 if f (p ;  q) ~ p (16) 

where C is any arbitrary constant andfsatisfies the functional equation (11). 
The most general nonzero continuous solution of the functional equation 

(11) in [0, 1] x (0, 1] (refer to Aczdl (1~) is given by 

f (p ;  q) = p~qB (17) 

where ~ and/3 are arbitrary parameters. 
The condition of continuity of the function f (p ;  q) at p = 0 requires 

that ~ /> 0. But when ~ = 0, we get from (17) tha t f (p ;  q) = q~. This violates 
our condition f (0 ;  q) = 0 [refer to axiom (III)]. Therefore ~ r 0, i.e., ~ > 0. 
Further, when ~ = 1 and/3 = 0, we get from (17) t h a t f ( p ; q )  = p, which 
together with (15) and (5) gives the measure (1). This case has been discussed 
separately. Therefore, we have the solution of (11) in which f ( p ; q ) =  
p"q~, c~ > 0, a n d f ( p ;  q) ~ p. 

3. A F U N C T I O N A L  E Q U A T I O N  

Let us take 

h(p ;q )=I2r (p ,  1 - p ; q ,  1 - q ) , O < ~ p < ~  1 , 0 < q  < 1; (18) 

then from symmetry, we have 

h(p;q) = h(1 - p; 1 - q) (19) 
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Again, if we consider the branching property for n = 3, this leads to 

h(p;q) + f(1 - p ; 1 - q ) h  1 - p ; 1 -  q 

( P q ) (20) = h(u; v) + f(1 - u ; 1 - v ) h  l - - u ; 1  - v 

for allp, uE [0, 1); q, v E(0, 1); a n d p  + u ~< 1, q + v ~< 1. 
Next, using the branching property for any n as in Lemma 3, we have 

I , '  (P; Q) = ~ f ( s i ;  h)h(pds,; q,/h) (21) 
1 = 2  

where s ~ = p l  + " ' + P = ;  h = q l  + ' " + q ~ ;  i = 2 , 3  .... ,n ;  and f satisfies a 
functional equation (refer to Lemma 3) given by 

f (pu;  qv) = f (p;  q)f(u; v) (22) 

for all p, u e [0, 1 ] and q, v e (0, 1 ]. 
The functional equation (20) whenf (p;q)  = p (refer to Kannappan and 

Ng (5~) has the general continuous solution given by 

h(p;q) = A[p logp  + (1 - p) log (1 - p)] 

+ B [ p l o g q + ( 1 - p ) l o g ( 1 - q ) ]  when f ( p ; q ) - = p  (23) 

Again, whenf (p ;  q) ~a p, the functional equation (20) (refer to Soni (12~) 
has the general continuous solution given by 

h(p;q)= C [ f ( p ; q ) + f ( 1 - p ; 1 - q ) -  1] if f ( p ; q ) r  (24) 

where f satisfies the functional equation (22) by Lemma 3. 
Now (21) together with (23) gives (1); while (21) together with (24) gives 

(16), which under the general continuous solution (17) of the functional 
equation (22) reduces to (2). This gives another characterization of the 
measures (1) and (2). 

4. P A R T I C U L A R  CASES 

Case I. (Kullback's relative-information measure): 
(2) under the conditions 

I2(p, 1 - p ; p, 1 - p) = O, 
and 

reduce to 
12(1,0;�89189 = 1 

Measures (1) and 

p ~ (o, 1) (25) 

(26) 

II,(P; Q) = ~ p, log(pJqi) 
| = 1  

(27) 
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and 

/ n._E. 
I I ~ ( P ; Q ) = ( 2  ~ - l - ] ) - l ~ l p i " q ~  - ~ -  1), c~-r co>0  (28) 

respectively. 
Expression (28) reduces to (27) when ~ -+ 1, which is Kullback's relative- 

information measure as characterized by many authors/~-4,7'8"1~ 

Case IL (Kerridge's inaccuracy measure): Measures (1) and (2) under 
the conditions 

I3(pl,  P2, P3; ql,  q2, qz) = I2(pl,  P2 + P3; ql,  q2) (29) 

and 

reduce to 

I9,(�89 �89 �89 �89 = 1 (30) 

2I,~(P; Q) = - ~ p~ log q, (31) 
i = 1  

and 

( % )  j / ( p ;  Q) = (2-~ _ 1)-1 p,qB _ 1 , 

respectively. 

/3 # 0 (32) 

Expression (32) reduces to (31) when fl-+ 0, which is Kerridge's in- 
accuracy measure as studied by many authors. <~,6'9~ 
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