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On Measures of Information
and Inaccuracy
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The Kullback relative-information measure and Kerridge’s inaccuracy
measure and their generalized forms are consequences of different forms of
the branching property that these measures are required to satisfy. We
consider a seemingly more generalized form and show that it does not lead
to new measures. We also form a functional equation in two variables
through this generalized branching property and show that this leads to the
same result.
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1. INTRODUCTION

Sharma and Taneja? axiomatically characterized the measures

I(P; Q) = A > plogp, + B > pilogg, )
i=1 =1
and
IE9(P; Q) = C[zpi“qi” - 1], «>0 @)
i=1

(A, B, and C are arbitrary constants and « and S are parameters such that
o # 1 when B = 0) corresponding to the probability distributions P =

(plb'":pn)s Di 2 O’ Zzn:lpi = la and Q = (ql’-"a qn)5 q; > Os Z?:l q; < 19
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associated with a discrete random variable X assuming finite number of values
€1sees €n.

Measures (1) and (2) jointly have also been characterized by Taneja ¥
by a generalized functional equation having four different functions.

Measures (1) and (2) under certain boundary conditions reduce to
Kullback’s™ relative-information measure and Kerridge’s® inaccuracy
measure [see expressions (27) and (31), respectively] and their generalized
forms given in (28) and (32), respectively. Thus the measures studied by
Kullback and Kerridge, which have many uses in information theory,
statistics, physics, economics, etc., and their respective generalized forms are
included in (1) and (2).

These measures arise mainly due to a branching property which for (2)
may be written as

I&P(P; Q) — K2R(py + P2y Pasees Pus G + Gas Gasenes Gn)
= pgfI55P(.) (3)

wherep; = py + p2 > 0,4, =q: + g2 > 0.

The relation (3) when 8 = 0 and « = 1 gives rise to a different case
which leads to the measure (1).

In this communication, we start with a seemingly more generalized form
of the branching property, taking a general continuous function f(p;; ¢;) in
place of the p,%¢;® that occurs in (3). It is established that such a change does
not give new measures and that (1) and (2) cover all the measures that can
be so obtained. In fact, f(p;; ¢;) = p%¢” is the most general form compatible
with the generalized form of (3), provided we impose constraints of symmetry
and continuity.

Remarks. In what follows we shall take 0log 0 = 0 log (0/g;) = 0 for
all i = 1, 2,..., n and all the logarithms are considered to the base 2.

2. CHARACTERIZATION THEOREM

Let I/(P; Q) be an information-theoretic measure associated with a
pair of probability distributions P = (py,...,pn), 1 2 0, 271 pi = 1, and
0 =1y qn), ¢ >0, T2-1q;: <1 of a discrete random variable. We
consider that the function I,/(P; Q) satisfies the following axioms:

() (Continuity). IL/(P; Q) is a continuous function of its arguments.
(1D (Symmetry). L/(P; Q) is symmetric for any permutation of
elements in P followed by the same permutation of elements in Q.
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(1II) (Generalized branching property).

I i o 1(D1seees Pim1s Useees Uy Dig 15005 P
X Gryeves Gie1s Meseves Py i 15eees )
= L/(P; Q) + f(pi; g’ 01/Piseers UnfPi5 h1/Gisees /G0
where v, 2 0, >P_ 0, =p > 0; I >0, DP_, k., =¢q, > 0 for

every [ = 1,2,...,n; and f is any continuous function defined in
[0, 1] x (0, 1] such that f(0; q) = O.

Theorem. The function I,/ (P; Q) determined by the axioms (I)~(111) can
be only of the form (1) or (2).

Before proving the theorem, we give some intermediate results based on
above axioms in the following lemmas:

Temma 1. If v, 20, j=1,2,..,m, DM v, =p >0, and A > 0,
j = 13 29"-:mi: ZTél hij =g > 0: [ = 19 25'--ana Z?=1Pi = 15 Z?:lqi < 1:
then

I oyt oy (D11 55 Dimgseres Ontseees Uy 3 Axtaeees Bimyseens Antseens Bumy)
=L'(P; Q) + iif(pz- S i /Piseos Vi D35 Bis [ Qiseens Bimf @) (B)
This temma directly follows from axiom (III).
Lemma 2. If F(m;r) = L/(1/m,..., I/m; 1/r,..., 1/r), then
F(m;r)= A'logm + B'logr when f(1/m;1)r} # 1/m %)
or
F(m;r) = Clmf(1/m; 1/r) = 1] ~ when f(1/m;1/r)# 1/m (6)
where
SQmn; 1frsy = f(1/m; 1/r)f(1/n; 1/s) ()

m, n, r, and s are arbitrary positive integers suchthat 1 < m < r,1 < n < s;
and A', B’, and C are arbitrary constants.

Proof. In Lemma | replace m; by m, set v,; = 1/mn, hy; = 1/rs, q; = 1/s,
i=1,2,..,n;j=1,2,..,m; where m, n, r, and s are positive integers such
that 1 < m < r,1 <€ n < s5; then we obtain

F(mn; rs) = F(m;r) + mf(1/m; 1/r)F(n; s) 6]
Now there are two cases to consider.
Case I. When f(1/m; 1/r) = 1/m. In this case (8) reduces to
F(mn; rs) = F(m;r) + F(n;s) 9
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The continuous solution of this number-theoretic functional equation
(refer to AczEl'V) is given by (5).

Case II. When f(1/m; 1/r) # 1/m. In this case symmetry in m,n and r,s
implies
F(mn; rs) = F(nm; sr)
ie.,
F(n;r) + mf(1/m; 1/r)F(n; s) = F(n; s) + nf(1/n; 1/s)F(m;r)
or
F(m;r) _ F(n; s)
mf(1/m; 1/r) — 1 nf(I/n; 1/s) — 1
provided f(1/m; 1/r) # 1/m.
Thus, expression (10) gives
Fm;r) = Cmf(1/m; r) — 11 if  f(l/m; 1r) # 1/m
where C is any arbitrary constant.
Now substituting (6) in (8), we get (7).

Lemma 3. The function fin axiom (III) is such that it satisfies a functional
equation

= C (say) (10)

Spu; qvy = f(p; ) f(u; v) (11)
for all reals p, u [0, 1] and ¢, v € (0, 1].
Proof. From axiom (IIl), we may write

B sm=1(Prsees Pio1s Vtsees Uy it 150 Pu3 Guoees Q=15 By B Qi 15005 )
=L 1(Prsees Pic1s V15 Ps Pig15eees Prs Quseees @i 15 P15 G5 Qi 150005 Gn)
+ (P DI (V2] VD5 B2/ G B T)
where p=vs+...4+0,>0; g=h+...+h, >0
= L/(P; Q) + f(pi; @)1 (vi[ps; Plpi; b/, Glgs)
+ J 05 DI - 102, VP 12] G, Bl )
where pi=v,+p=v,+...+0n; =M +g=h+...+h,
(12)
Alternatively, we can write, again from axiom (111),

I mt(P1seees Pic 15 Vtyeres Uy Dit1seees P @1seees Gim 1o Bl sevns Bimy Qi1 5eees @)
= L' (P; Q@) + f(pi; @) n’ (01/Pisees Unf i3 Hs[Giseees B GT3)
= L/ (P; Q) + f(pi; gL (vi/pi, PIpi; hifay, G/9)
+ f(BIps; @/a)h - 12Dy Ul D5 o] G, Pinl G)}
= L (P; Q) + f(ps; g1 (wi/ps, Blps; Infgis G/a:)
+ f(pi; @) fBIpis G/a)T 5 - 1(Va/Dser s Um[D 5 P12/ Ges [ T) (13)
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Comparing (12) and (13), we get
S@lps @lg) = FB; DIfpisa) if fpi;q) # 0 (14)
Now (14) together with (6) and the continuity of the function f gives (11).

Proof of the Theorem. We prove the theorem for rationals and then the
continuity axiom (I) gives the result for reals. For this let m, the x; and the y;
be positive integers such that x; < y; foreveryi = 1,2,...,nand >y x; = m
and if we put p, = x;/m, q; = y/r, i = 1, 2,..., n, where >?., y; < r, then
Lemmas 1 and 2 give

L/(P5 Q) = Flms 1) = 3 flpis a)F (v ) 1)

Now (15) together with (5) gives (1).
Again (15) together with (11) and (6) gives

Hei0=c| S -1 fmotr 09

where C is any arbitrary constant and f satisfies the functional equation (11).
The most general nonzero continuous solution of the functional equation
(I1yin {0, 1] x (0, 1] (refer to Aczél™®} is given by

fp;q) = p'q* an

where ¢ and B are arbitrary parameters.

The condition of continuity of the function f(p;¢q) at p = 0 requires
that ¢ > 0. But when o = 0, we get from (17) that f(p; q) = ¢°. This violates
our condition f(0; ¢) = 0 [refer to axiom (III)]. Therefore « # 0, i.e., & > 0.
Further, when « = | and B8 = 0, we get from (17) that f(p;g) = p, which
together with (15) and (5) gives the measure (1). This case has been discussed
separately. Therefore, we have the solution of (11) in which f(p;q) =
pq’, e > 0, and f(p; q) # p.

3. A FUNCTIONAL EQUATION
Let us take
Wp;q) =L'(p,1 —p;q.1 —q),0<p<L,0<g<1; (18)
then from symmetry, we have

Mp;q) = k(1 ~ p; 1 — q) (19)
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Again, if we consider the branching property for n = 3, this leads to

Mp;q) + f(1 - p;1 q)h( plv )

— hiu- a1 P . 49
=hu;v) + 1 —u; 1 v)h(1 T v) (20
forallp,ue[0,1);q,ve@, D;andp+u<1l,g+v < 1.

Next, using the branching property for any » as in Lemma 3, we have
LI (P; Q) = > flsi; t)h(pifsi; qifty) 1)
1=2

where s; = p; ++pi; =g, ++¢q;; i = 2,3,...,n; and f satisfies a
functional equation (refer to Lemma 3) given by

Spu; qv) = f(p; )f (u; v) 22
forall p,ue]0, 1] and ¢, v € (0, 1].

The functional equation (20) when f(p; g) = p (refer to Kannappan and
Ng®) has the general continuous solution given by

h(p;q) = Alplogp + (1 — p)log (1 - p)]
+ Blplogg + (1 —p)log(1 —¢q)]  when f(p;q)=p (23)
Again, when f{(p; q) # p, the functional equation (20) (refer to Soni“2)
has the general continuous solution given by

hp;q) = Clfp;q) +fA —psl—q) =11 if fipsg)#p (24
where f satisfies the functional equation (22) by Lemma 3.

Now (21) together with (23) gives (1); while (21) together with (24) gives
(16), which under the general continuous solution (17) of the functional
equation (22) reduces to (2). This gives another characterization of the
measures (1) and (2).

4. PARTICULAR CASES

Case I. (Kullback’s relative-information measure): Measures (1) and
(2) under the conditions

Lip,! —p;p,1 —p)=0, pe(©1) (25)
and :

L(1,0:3, D=1 (26)
reduce to

1mm®=2mmmm @7
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and

L@ Q) = @ = D3 pwt e - 1). arl w>0 @)

respectively.

Expression (28) reduces to (27) when « — 1, which is Kullback’s relative-
information measure as characterized by many authors,®-%.7.8.10

Case II. (Kerridge’s inaccuracy measure): Measures (1) and (2) under
the conditions

Ii(p1, P2, P3s 415 925 92) = L(p1, P2 + P33 a1, q2) (29)
and
12(23 2 73 7) =1 (30)
reduce to
Lo(P; Q) = — D pilogg, 31)
Coi=1
and
LAP; Q) = A)Q%uq 820 (32
i=1
respectively.

Expression (32) reduces to (31) when 8— 0, which is Kerridge’s in-
accuracy measure as studied by many authors,*:59
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